Development of Theta Rhythmicity in Entorhinal Stellate Cells of the Juvenile Rat

Brian G. Burton, Michael N. Economo, G. Jenny Lee and John A. White

You might find this additional info useful...

This article cites 74 articles, 27 of which you can access for free at: http://jn.physiology.org/content/100/6/3144.full#ref-list-1

This article has been cited by 6 other HighWire-hosted articles: http://jn.physiology.org/content/100/6/3144#cited-by

Updated information and services including high resolution figures, can be found at: http://jn.physiology.org/content/100/6/3144.full

Additional material and information about *Journal of Neurophysiology* can be found at: http://www.the-aps.org/publications/jn

This information is current as of July 30, 2012.

Journal of Neurophysiology publishes original articles on the function of the nervous system. It is published 12 times a year (monthly) by the American Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2008 by the American Physiological Society. ISSN: 0022-3077, ESSN: 1522-1598. Visit our website at http://www.the-aps.org/.
Development of Theta Rhythmicity in Entorhinal Stellate Cells of the Juvenile Rat

Brian G. Burton, Michael N. Economo, G. Jenny Lee, and John A. White

Department of Biomedical Engineering, Center for Memory and Brain, Center for BioDynamics, Boston University, Boston, Massachusetts

Submitted 31 March 2008; accepted in final form 29 September 2008

INTRODUCTION

One of the most prominent electrical signals in the hippocampal network is the theta rhythm. The function of this rhythm is unclear, although the suggestion is numerous, including the coordination of information flow between brain areas (Dickson et al. 2000a), sensory inhibition (Sainsbury 1998), sensorimotor integration (Bland and Oddie 2001), memory (Seidenbecher et al. 2003; Winson 1978), phase-dependent coding of information (Huxter et al. 2003; Jensen and Lissman 2000; O’Keefe and Recce 1993), and phase-dependent synaptic plasticity (Larson et al. 1986; Orr et al. 2001). Most recently, studies of the medial EC in the rat suggest a specific role in spatial coding. So-called grid cells in the superficial layers of medial EC activate as the animal enters points in space separated at regular intervals on an abstract lattice (Hafting et al. 2005). The periodic nature of this representation has led some to argue that the theta rhythm is critically involved (Blair et al. 2007; Burgess et al. 2007; Giocomo et al. 2007). Many of these functions are not mutually exclusive but, given their diversity, it is of interest to determine when and how the theta rhythm develops in the young animal. One might then be able to clarify the role of theta by correlating its emergence with particular cognitive or motor skills. Knowledge of the timing of theta development with respect to other developmental events may also aid our understanding of the mechanisms of theta generation in the mature animal.

A natural focus for a developmental study of theta generation is the stellate cell of layer II in the medial entorhinal cortex. Stellate cells are the principal projection neurons from the EC to the hippocampal formation (Steward and Scoville 1976; Witter 1993). They may also be grid cells because they are the most numerous principal neuron in layer II, which possesses the highest density of grid cells of all EC layers (Alonso and Klink 1993; Klink and Alonso 1997; Sargolini et al. 2006). When depolarized, stellate cells from medial EC produce clusters of spikes, loosely phase-locked to an intrinsic subthreshold membrane potential oscillation (MPO) in the theta range (Alonso and Klink 1993; Alonso and Llinás 1989).

Knowledge of the timing of theta development with respect to other developmental events may also aid our understanding of the mechanisms of theta generation in the mature animal.

Consequently, the development of theta rhythmicity in entorhinal stellate cells is believed to be generated by the interaction of an h current (I_h) and a persistent sodium current (I_NaP) (Alonso and Llinás 1989; Dickson et al. 2000b; Dorval and White 2005; Klink and Alonso 1993; White et al. 1998; see Nolan et al. 2007 for a divergent view and the DISCUSSION for more on this topic). According to current models, both I_h and I_NaP contribute to resonance by providing rectification and amplification, respectively (Dickson et al. 2000b; Hutcheon and Yarom 2000). Additionally, persistent sodium channels have a large conductance but occur in low numbers and contribute substantially to membrane noise (Magistretti and Alonso 1999; White et al. 1998). MPOs in current clamp are then the product of an I_h-
METH ODS

Preparation and recording

Long–Evans rats were anesthetized with 1.5 ml 2-chloro-2-(difluoron methoxy)-1,1,1-trifluoro-ethane (isoﬂurane; Abbott Laboratories, Chicago, IL), diffused in a 4-L container, and were decapitated. Their brains were removed and placed dorsal side down in a chamber ﬁlled with ice-cold, oxygenated artiﬁcial cerebrospinal ﬂuid (ACSF; see following text for details). Horizontal slices, 300 μm thick, of the hippocampal formation and entorhinal cortex were cut using a vibrating microtome (Vibratome 1000 Plus; Vibratome, St. Louis, MO). These were transferred to a second chamber of ACSF at room temperature and bubbled continuously with a 95% O2-5% CO2 mix for ≥1 h. All procedures involving animals were approved by the Charles River Campus Institutional Animal Care and Use Committee, Boston University.

For recording, slices were transferred to a third chamber of oxygenated ACSF held at 34°C. The tissue was imaged under infrared differential interference contrast optics (Carl Zeiss, Thornwood, NY) and viewed with the aid of an infrared camera (CCD 100; Dage-MTI, Michigan City, IN) and a TV monitor. Recordings were from medial entorhinal cortex layer II. Stellate cells were identiﬁed by location in superficial layer II, where other cell types are rare or nonexistent (Klink and Alonso 1997; Wang and Lambert 2003); the presence of a superficial layer II, where other cell types are rare or nonexistent (Klink and Alonso 1997; Wang and Lambert 2003); the presence of a two- to three-layer deep cell, patch resistance was always >300 MΩ in voltage-clamp experiments measuring persistent sodium currents, and a resistance >200 MΩ in h-current experiments. Prior to breaking into the cell, patch resistance was always >2 GΩ, indicating a tight seal between pipette and membrane.

Physiological responses were recorded on computer via the Multi-Clamp 700A ampliﬁer (Axon Instruments, Union City, CA). Adjustments of the voltage- and current-clamp settings, including holding signals, were performed with the MultiClamp software provided with the ampliﬁer. The feedback resistors on the headstage for voltage and current clamps were 500 MΩ and 5 GΩ, respectively. Stimulus presentation and data acquisition were performed with custom software written in Matlab (The MathWorks, Natick, MA). Physiological signals were ﬁltered at 800 Hz with a Bessel ﬁlter and sampled at 2 kHz. The general holding potential in voltage clamp was −40 mV for h-current recordings and −50 mV for persistent sodium recordings, after adjustment for junction potentials (see following text).

Recording solutions

The extracellular solution (ACSF) for slicing, current-clamp recording, and staining was (in mM): 126 NaCl, 1.25 NaH2PO4, 2 MgCl2, 26 NaHCO3, 2 CaCl2, and 25 D-glucose. The intracellular (patch pipette) solution for current-clamp recording and ﬁlling was (in mM): 10 KCl, 120 K gluconate, 10 HEPES, 4 Mg-ATP, 0.3 Tris-GTP, and 10 Na2 phosphocreatine plus 20 U·ml−1 creatine kinase. During the process of ﬁlling cells, biocytin was added to the pipette at 0.5%.

For the experiments isolating the h current, the extracellular solution was (in mM): 80 NaCl, 26 NaHCO3, 5 KCl, 3 MgCl2, 2 CaCl2, 2 CoCl2, 0.4 CdCl2, 40 tetraethylammonium (TEA) chloride, 4 4-aminopyridine (4-AP), 0.001 tetrodotoxin (TTX), and 10 D-glucose. The intracellular solution was the same as the slicing solution.

For the experiments isolating the persistent sodium current, the extracellular solution was (in mM): 34 NaCl, 26 NaHCO3, 5 KCl, 3 CsCl, 3 MgCl2, 2 BaCl2, 2 CoCl2, 0.4 CdCl2, 80 TEA, 4 4-AP, and 10 D-glucose. The intracellular solution was 10 KCl, 55 K gluconate, 50 Cs methanesulfonate, 10 HEPES, 10 EGTA, 4 Mg-ATP, 0.3 Tris-GTP, and 10 Na2 phosphocreatine plus 20 U·ml−1 creatine kinase.

Additionally, 10 μM biccuculline methodide and 4 mM kynurenic acid were added to all extracellular solutions to block synapses. The pH was adjusted to 7.4 with HCl and NaOH. Osmolality was adjusted to 300 mOsm with sucrose. Intracellular solutions were adjusted to a pH of 7.3 with HCl and KOH. Osmolality was 290 mOsm. Junction potentials were measured according to the method of Neher (1992). These were 12.1 mV (SD = 5.77 mV, n = 4) for the standard solutions, 14.5 mV (SD = 3.50 mV, n = 6) for the h-current solutions, and 14.7 mV (SD = 2.45 mV, n = 4) for the persistent sodium current solutions. Data were adjusted for these potentials.

Anatomy

Slices (300 μm thick) were prepared as described earlier. Stellate cells were patched with electrodes containing 0.5% biocytin (Molecular Probes, Eugene, OR), ﬁlled for 1 h (Horikawa and Armstrong 1988), and ﬁxed in 4% paraformaldehyde overnight. Following ﬁxation, the slice was washed in 0.1 M phosphate-buffered saline (PBS) for 45 min and prepared for either brightﬁeld or epifluorescence microscopy.

For bright-ﬁeld specimens, cells were stained with diaminobenzenidine (DAB). Endogenous peroxidase activity was quenched by exposure to 1% hydrogen peroxide (H2O2) and 10% methanol in PBS for 30 min. Following a further 30 min in fresh PBS, the slice was reacted with avidin-biotinylated horseradish peroxidase (ABC Elite kit; Vect, Labs, Peterborough, UK) in 0.75% Triton-X100 (Sigma–Aldrich, St. Louis, MO) PBS for 2 h. The slice was then washed in a solution of 5 μl per ml of DAB in PBS for 30 min and the stain was developed for 2–3 min under a microscope with the addition of 1 μl per ml H2O2. The slice was washed in PBS for a further 45 min and mounted on a slide with Mowiol 4-88 (Polysciences, Warrington, PA) (Longin et al. 1993). Cells were imaged using a MagnaFIRE digital camera (Optronics, Goleta, CA) attached to an Olympus BX51 microscope (Olympus, Melville, NY).

For the ﬂuorescence microscopy, washed slices were incubated for 4 h in a mixture of 0.75% Triton-X100 and 2 μg·ml−1 streptavidin-Alexa Fluor 488 (Molecular Probes). Slices were mounted in Mowiol.

and Inap-induced resonance, ringing in response to Inap-induced noise (Dorval and White 2005; White et al. 1998). Ih, supplemented by a calcium-dependent K+ current, is also thought to be involved in spike clustering (Fransen et al. 2004; Nolan et al. 2007). It is therefore reasonable to hypothesize that the expression of Ih and Inap play a role in the development of theta rhythmicity in EC stellate cells. Here we examine the physiological development of stellate cells in rat medial entorhinal cortex in vitro and correlate this with expression of Ih and Inap. We also examine the morphological development of these cells, particularly with regard to spine development as an indication of capacity to support theta at the network level.
Images of filled cells were obtained using a confocal laser scanning microscope (Zeiss LSM 510, Carl Zeiss) with a ×40 objective lens. Laser excitation was at 458 nm (argon) and emitted light was low-pass filtered at 475 nm. Image contrast was adjusted after scanning to suppress background staining.

Analysis

VOLTAGE POWER AND IMPEDANCE SPECTRA. Power spectra of peristimulus times were calculated from traces of cells firing between 0 and 0.1 Hz in current clamp. At these frequencies, long periods of robust subthreshold theta oscillation may be observed between spikes. Traces were divided into overlapping segments of 2-s duration, each shifted by 0.2 s from the previous trace. Ignoring segments within 150 ms before and after any spikes, a cell’s power spectrum was calculated as the Fourier transform of the response to the stimulus and the mean response of a cell to eight presentations of the stimulus were divided into overlapping 2-s segments. A cell’s impedance spectrum was calculated as the mean power spectral density of all its segments (truncated cosine window function; Papoulis 1991). Unless otherwise stated, overall power was determined as the integral of the power spectrum between −25 and 25 Hz, excluding 0 Hz.

Impedance spectra were calculated from the voltage responses of stellate cells to white noise current stimuli at 5 mV above rest. Stimuli were 12.5 s long, but only the last 10 s were analyzed to avoid contamination by the cell’s natural (transient) response. Each cell received a different stimulus, white to a frequency of 25 Hz. Stimulus SD ranged from 7 to 40 pA and was adjusted to keep the response within a peak-to-peak range of about 5 mV. As for voltage power, the frequency range was calculated as the mean power spectral density of all its segments (truncated cosine window function; Papoulis 1991). Unless otherwise stated, overall power was determined as the integral of the power spectrum between −25 and 25 Hz, excluding 0 Hz.

RESULTS

Physiological development of stellate cells

In current clamp, stellate cells of layer II entorhinal cortex (EC) may be distinguished from nearby nonstellate cells by the production of a delayed repolarization, or “sag,” in response to hyperpolarizing current steps and by early spikes in response to depolarizing steps (Fig. 1, A and B). Additionally, mature cells exhibit a subthreshold membrane potential oscillation (MPO) in response to constant depolarizing current (Fig. 1, B and C). MPOs are found to be phase-locked with the oscillation and limited to one spike per cycle.

Perhaps the most striking of these features is the MPO. This is generated intrinsically and is thought to involve the interplay of two currents, a slow rectifying h-current (Ih) and a regenerative “persistent” sodium current (INaP) (Alonso and Llinás 1989; Dickson et al. 2000b; Dorval and White 2005). Although Ih is thought to be a crucial contributor to the resonance necessary to support an oscillation, INaP amplifies the resonant response and provides the channel noise sufficient to trigger and maintain “ringing” oscillations of the resonant system. In our recordings, we typically found MPOs to be in the low theta to subtheta frequency range (−3 Hz), although spike frequencies within a cluster were slightly higher. This frequency is slightly lower than the in vivo theta rhythm, but is consistent with other patch-clamp recordings from ventral EC (Giocomo et al. 2007). We investigated the development of the oscillation in cells from animals aged between postnatal days 14 (P14) and 18 (P18). The properties of a second group, aged 28 to 32 days (“P28+”), represented the mature condition.

\[
g(V) = \frac{G}{1 + \exp \left[-(V - V_{so})/\lambda\right]} \quad (4)
\]

with three parameters—G, Vso, and λ—describing, respectively, the maximum conductance of the channel, the potential of half-maximum activation, and the channel’s activation range.

SPINE DENSITY. Spine densities were calculated from DAB-stained slides, using a grid superimposed over the dendritic field by camera lucida. Grid squares of 40 × 40-μm dimensions were selected at random and the spine density in each was calculated manually as the number of spines present divided by the total dendritic length. Length was measured with a caliper resolution of 8 μm. Squares without dendrites were ignored. When counting spines, long, thin filopodia, thought to represent spine precursors (Fiala et al. 1998), were not included.

STATISTICS. For each measured parameter, the overall effect of age across the study period was assessed by ANOVA. Additionally, a linear trend analysis was applied to the data from P14 to P18 (Maxwell and Delaney 2004). Values at P28+ were compared with those at both P18 and P14 by t-test. In those cases for which data were available only at P14, P18, and P28+, the linear trend analysis was replaced by a t-test. To control for the family-wise error introduced by performing three comparisons, P values were interpreted with reference to an alpha level of 0.05/3 = 0.0167 (Howell 1997). All F statistics presented in the text refer to the results of an ANOVA. Student’s t-tests refer to either a linear trend analysis or a t-test or a test of a Pearson’s correlation coefficient, as appropriate. All quoted measures of spread are SEs.
As illustrated in Fig. 2, MPOs were absent at P14 but gradually emerged between P14 and P18. Visual comparison of the P18 and P28/H11001 examples will find that the oscillations at P18 are of a frequency and consistency similar to those in the adult. This observation was repeated throughout the set, although P28/H11001 oscillations were generally of slightly lower amplitude than that at P18. To quantify these changes, we constructed power spectra of the membrane voltage at peri-threshold levels of injected DC current, where the cell is spiking but at such a low rate that the “subthreshold” MPOs can be well isolated (METHODS). At P14, when MPOs were absent, voltage power fell monotonically with frequency over the theta range (Fig. 3A). On P16 (not shown), a shoulder appeared around 3 Hz and this developed into a prominent peak by P18. At older ages, overall power fell, starting at 0.288 mV² on P18 and ending at 0.126 mV² by P28+. Nevertheless, the proportion of power in the theta band was maintained at P28+, demonstrating continued theta content. Quantifying the prominence of theta as the proportion of the total power occurring between 2 and 4 Hz, there was a significant effect of age on theta prominence [ANOVA: F(5,26) = 9.25, P < 0.001]. Mean theta prominence increased steadily from 0.240 ± 0.0269 (n = 4) at P14 to 0.544 ± 0.0392 (n = 6) at P18 [trend analysis: t(26) = 5.55, P < 0.001] (Fig. 3D). At P28+, theta prominence was 0.574 ± 0.0435 (n = 4). Theta prominence at P28+ was significantly larger than the value at P14 [Student’s t-test: t(26) = 5.28, P < 0.001], but not significantly different from that at P18 [Student’s t-test: t(26) = 0.525, P = 0.604]. This pattern was not attributable to systematic shifts in recording potential because spike threshold (where MPOs were recorded) showed no effect of age [F(5,26) = 1.28, P = 0.303].

Although our main concern here is the development of MPOs, other changes over the study period are also evident in Fig. 2. At P14, the rebound following spike afterhyperpolarization (AHP) was slow, such that voltage rose steadily from one spike to the next and interspike interval (ISI) was fairly constant. Starting at P15, however, the AHP began to shorten in some cells and on P16 and P17 spikes began to cluster as in the mature cell. Because both AHP duration and spike clustering are thought to be influenced by I_h (Fransén et al. 2004; Klink and Alonso 1993; Nolan et al. 2007), we examined these attributes in more detail (Fig. 3, B, C, and E–G). As shown in Fig. 3B, shortening of the AHP was a general feature of our
data. Half-width, measured as the width of the AHP at half the minimum voltage relative to background, varied significantly over the study period as a whole ($F(5,39) = 15.9, P < 0.001$) and fell significantly from 174 ± 14.7 ms ($n = 4$) at P14 to 89.4 ± 3.50 ms ($n = 7$) at P18 ($r(39) = 7.60, P < 0.001$). Like theta prominence, however, it witnessed no further change from P18 to P28+ ($r(39) = 1.06, P = 0.295$) (Fig. 3E). Further features of AHP development evident in Fig. 3B are the deepening of the AHP and the development of an overshoot between days P14 and P18. Measuring overshoot as the maximum potential reached above background voltage, overshoot rose significantly from near 0 mV at P14 to 1.01 ± 0.150 mV at P18 ($r(39) = 5.48, P < 0.001$) (Fig. 3F). Although overshoot fell again by P28+ (0.589 ± 0.172 mV, $n = 8$), the drop did not quite reach significance after taking account of family-wise error ($r(39) = 2.38, P = 0.023$; see methods). Furthermore, overshoot at P28+ was still significantly greater at this age than that at P14 ($r(39) = 2.77, P = 0.008$). Amalgamating all ages, both AHP duration and overshoot were highly correlated with theta prominence [Pearson’s $r > 0.719, n(28) > 5.47, P < 0.001$].

To quantify the development of clustering, we calculated the coefficient of variation (CV) in ISI from recordings of stellate cells firing over their full range of firing rates. As shown in Fig. 3C, the CV was consistently higher in P18 animals than that in P14 animals. This was true at all but the lowest ISIs, where all cells were firing regularly. Between 0.5 and 1 Hz, where clustering was most prominent in mature cells, the CV witnessed a significant change over the study period [$F(5,37) = 10.0, P < 0.001$], increasing significantly from 0.261 ± 0.0114 ($n = 4$) at P14 to 0.869 ± 0.0926 ($n = 7$) at P18 [$r(37) = 6.02, P < 0.001$] (Fig. 3G). At P28+ CV was 0.805 ± 0.0621 ($n = 8$) and, again, whereas the overall change from P14 to P28+ was significant [$r(37) = 5.12, P < 0.001$], the change from P18 to P28+ was not [$r(37) = 0.718, P = 0.477$]. The CV was highly correlated with both theta prominence [$r = 0.790, t(27) = 6.70, P < 0.001$] and AHP overshoot [$r = 0.831, t(39) = 9.33, P < 0.001$].

Developmental changes in electrical response

Given that MPOs in stellate cells are thought to be the product of a highly resonant membrane interacting with internal noise sources (Dorval and White 2005; White et al. 1998) one might expect the development of MPOs to be associated with increasing resonance.

To measure resonance, we injected white noise currents into a subset of cells at the key ages—P14, P18, and P28+ (Fig. 4A)—and constructed impedance spectra from the responses (methods). Membrane potential was depolarized to −67 mV (~5 mV above rest), to bring the potential near the value normally associated with spontaneous MPOs but below the threshold to trigger action potentials. Spectra were fitted with the empirical model of Erchova et al. (2004), which treats the membrane as a low-pass capacitative circuit, representing the passive membrane, in parallel with a high-pass inductive circuit, representing a rectifying conductance. From the fits, descriptive parameters were calculated, including the frequency of maximum impedance (f_{im}) and the Q factor, which is the ratio of the maximum impedance amplitude to its value at the lowest frequency measured (0.5 Hz). We also extracted the cutoff frequency (f_{cut}), which is the frequency at which the passive membrane attenuates impedance power by half and is a conventional measure of membrane speed or bandwidth. (In the time domain, one would use the time constant: $\tau_m = 1/2\pi f_{\text{cut}}$.)

As illustrated in Fig. 4B, the magnitudes of impedance power spectra fell substantially from P14 to P18 and beyond. There was also a clear change in the mean shapes of spectra, from being largely low-pass at P14 to becoming resonant, with a peak at nonzero frequencies at P18 and P28+. In fact, three of eight P14 cells were completely nonresonant, having a maximum impedance power at 0.5 Hz. Overall f_{im} changed significantly from 1.44 ± 0.395 Hz ($n = 8$) at P14 to 3.36 ± 0.340 Hz ($n = 7$) at P18 and 3.35 ± 0.308 Hz ($n = 10$) at P28+ [$F(2,22) = 9.93, P < 0.001$]. The change from P14 to P28+ was significant [$r(22) = 3.70, P = 0.001$] but the change from P18 to P28+ was not [$r(19) = 0.015, P = 0.99$] (Fig. 4C). Parallel changes occurred in the cutoff frequency, which rose significantly from 2.65 ± 0.304 Hz at P14 to 4.76 0.363 Hz at
P18 and 4.13 ± 0.458 Hz at P28+ \([F(2,22) = 6.72, P = 0.005] \) (Fig. 4D). Again P14 and P28+ were significantly different \([t(22) = 2.69, P = 0.013] \) but P18 and P28+ were not \([t(22) = 1.10, P = 0.285] \). The Q factor, which measures how strongly the membrane band-pass filters broadband input, followed a similar pattern. This rose from 1.16 ± 0.062 \((n = 8) \) at P14 to 1.35 ± 0.072 \((n = 7) \) at P18 and 1.34 ± 0.049 \((n = 10) \) at P28+, but the overall effect of age fell just short of significance \([F(2,22) = 3.23, P = 0.059] \) (Fig. 4E).

These results indicate two features of stellate cell development. First, the amplitude of the resonance peak increases from P14 to P18, consistent with the hypothesis that the development of MPOs follows the development of resonance. Second, this increase in resonance is achieved despite a decrease in overall cellular input resistance. The falling magnitude of the impedance at low frequencies and the increasing bandwidth indicate that resistance is lower at P28+ than that at P14. Yet, artificially decreasing resistance in stellate cells (P19–P31) has been shown to lower resonance and both MPO amplitude and theta content (Fernandez and White 2008). Thus there must be a strong current contributing to resonance for impedance to become more resonant from P14 to P18.

Based on past work on the subject of resonance and MPOs in mature stellate cells (e.g., Dickson et al. 2000a,b; Dorval and White 2005; Haas and White 2002; Haas et al. 2007; Klink and Alonso 1993; White et al. 1998), there are two obvious candidate membrane currents: \(I_h \), the slow rectifying current thought to set the resonant period, and \(I_{NaP}^{\infty} \), the persistent \(Na^+ \) current that amplifies and adds noise important for MPOs. We first studied \(I_h \) in current-clamp data by examining whether the degree of sag changes from P14 to P28+. As shown in Fig. 1A, in response to negative current steps, P14 cells already showed a prominent sag, considered the signature of \(I_h \) (Klink and Alonso 1993). For step amplitudes of between −10 and −40 pA, producing re-
responses ending between −80 and −75 mV, steady-state resistance fell continuously from P14 to P28+ [F(5,73) = 13.6, P < 0.001] but the percentage reduction in the voltage response from peak to steady state was quite stable, with a mean of 26% [P14 vs. P28+: r(73) = 0.278, P = 0.782]. That is, developmental changes in resonance near threshold were not matched by effective changes in I_h-generated sag below rest.

Expression of ionic currents

Although the preceding results may suggest that I_h is not a limiting factor in the emergence of resonance and MPOs from P14 to P18, the responses of stellate cells to injected current under normal conditions are influenced by several ionic currents, which may obscure the particular contribution of I_h. To further investigate the mechanisms of MPO development, we studied I_h and I_{NaP} in isolation under voltage clamp (see following text). The likely effects of these currents and their relative importance in limiting MPO development are explored through simulation in the supplemental material.1

Expression of I_h

Expression of I_h was investigated using the step protocol of Dickson et al. (2000b), illustrated in Fig. 5. In the presence of blockers of K^+, Ca^{2+}, and Na^+ channels, voltage steps of 2-s duration were applied from a holding of −40 mV (Fig. 5A). The tail currents (Fig. 5B) predominantly reflect the slow decay of I_h from its steady-state step value to its value at the holding potential (Dickson et al. 2000b). The amplitude of each tail current was measured by fitting a double-exponential curve to the tail (Eq. 1) and finding the value of the fit shortly after the tail’s peak. The corresponding conductance (g_h) was calculated by subtracting the current amplitude obtained at the most depolarized step, where I_h is inactive, and adjusting the result for the effective reversal potential of the I_h channel (Eq.

FIG. 4. Response to injected current. A: mean response (above) of an example cell from a P29 rat in response to the presentation of a white noise current stimulus (below) at −67 mV. Mean response is an average of 8. To avoid the influence of the cell’s transient response on impedance measurements, only the last 10 s, starting from the arrowhead, were used to estimate membrane impedance (METHODS). B: mean impedance power spectra (square of impedance amplitude) obtained from white noise responses for cells from rats at P14, P18, and P28+, as indicated. P14 cells were mainly low-pass. C–E: impedance parameters (P14, P18, and P28+, n = 8, 7, 10). C: frequency of maximum impedance, f_0. D: cutoff frequency, f_{cut}. E: Q-factor (maximum amplitude divided by amplitude at 0.5 Hz).

1 The online version of this article contains supplemental data.
Conductance as a function of voltage was then fitted with a Boltzmann model whose parameters G_h, $V_{50 h}$, and λ_h describe, respectively, the maximum conductance of I_h (i.e., the conductance when I_h is fully activated), the half-activation potential of I_h, and the range of activation (Fig. 5C) (Eq. 4).

Figure 5, D and E shows respectively the maximum conductance magnitude (G_h) and the corresponding conductance density (or conductance per unit capacitance) of I_h across the period of our study, where capacitance was read from the MultiClamp amplifier (METHODS). Although the former indicates the absolute expression levels of I_h to drive the membrane. Both measures showed a general increase with age (see also Fig. 5, B and C). However, the overall effect for conductance density was weak [$F(5,73) = 1.74, P = 0.136$] because capacitance rose from P18 to P28+ (not shown). Between P14 and P18, conductance density increased from $125 \pm 12.0 \text{pS.pF}^{-1} (n = 15)$ at P14 to $184 \pm 19.2 \text{pS.pF}^{-1} (n = 18)$ at P18, about 47%. The trend was significant [$t(73) = 2.73, P = 0.008$] but density at P28+ was intermediate at $149 \pm 20.3 \text{pS.pF}^{-1} (n = 5)$ and was not significantly different from either the P14 value [$t(73) = 0.717, P = 0.476$] or the P18 value [$t(73) = 1.08, P = 0.286$]. It is therefore not easy to correspond I_h expression with MPO theta content.

In addition to conductance, we analyzed the other parameters of the Boltzmann model of the conductance curve as well as the parameters of the double-exponential model of tail current, including the time constants of the two components τ_1 and τ_2, and the proportion (β) of current amplitude contributed by the faster (τ_1) component. None of these showed a statistical trend across the period of the study. The grand means for these parameters were: half-activation potential, $-66.9 \pm 0.456 \text{mV}$; activation range, $6.25 \pm 0.119 \text{nS}$; fast time constant, $56.6 \pm 3.57 \text{ms}$; slow time constant, $284 \pm 13.44 \text{ms}$; and current quotient (β), $0.515 \pm 0.0200 \text{mV}$). β, τ_1, and τ_2 were averaged across responses to step voltages more negative than -70mV, where tail currents are robust and we found β to be constant.

In summary, although there is some evidence for developing expression of the h current in the third week after birth, the overall pattern is not consistent with I_h being an important limiting factor in the appearance of MPOs. These results support our earlier finding that the strength of the voltage sag in response to negative current steps was stable from P14 onward and indicate that the poor resonance of P14 cells may be due to factors other than levels of I_h expression. Consistent with this interpretation, our simulations showed that relative changes in the levels of I_h of the order measured here have relatively little effect on the existence of MPOs compared with other factors (such as I_{NaP}). Its role appears to be to help set the overall magnitude of the oscillation and, to a modest extent, the oscillation frequency (supplemental material).

Expression of I_{NaP}

Expression of I_{NaP} was investigated using either the ramp or step protocols of Magistretti and Alonso (1999). Both protocols rely on the sensitivity of I_{NaP} to tetrodotoxin (TTX) and its slow rate of inactivation compared with that...
of the conventional transient sodium current (I_{NaT}). In fact, the I_{Na} of stellate cells inactivates in a biexponential manner and, following measurements by Magistretti and Alonso (1999), we chose stimuli that isolate the slower, more “persistent” component.

The ramp protocol is illustrated in Fig. 6A. In the presence of blockers of K⁺, Ca²⁺, and h channels, voltage ramps were applied, rising at a speed of 50 mV·s⁻¹ from a holding potential of −95 mV to a maximum of +5 mV. At this ramp speed, I_{NaT} and the faster inactivating component of I_{NaP} are exhausted but the slower inactivating I_{NaP} components are relatively unaffected (Magistretti and Alonso 1999). The step protocol was similar except the stimuli were steps of various amplitudes, each applied from a holding of −80 mV for 800 ms. In both cases, the procedure was repeated in TTX and the difference between the two sets of responses was taken to reflect the amplitude of I_{NaP} (Fig. 6B).

The difference curve obtained was adjusted for the sodium Nernst potential (E_{Na}), according to Eq. 3 to obtain an estimate of the persistent sodium conductance $g_{NaP}(V)$, as a function of voltage V. Again, this curve was fitted with a Boltzmann model (Eq. 4) as shown in Fig. 6C, and parameters were extracted, including maximum conductance magnitude, G_{NaP}; the half-activation potential, V_{50}; NaP; and the range of activation, λ_{NaP}.

We compared the responses of cells from animals at P14 to P18 and P28+. Neither V_{50} nor λ showed any statistical effect of age, either between P14 and P18 [V_{50}: $\pi(79) = 0.941, P = 0.350$; λ: $\pi(79) = 0.237, P = 0.813$] or between P18 and P28+ [V_{50}: $\pi(79) = 1.01, P = 0.317$; λ: $\pi(79) = 0.269, P = 0.789$]. The grand means for these parameters across all animals were −45.9 ± 0.304 and 3.20 ± 0.103 mV, respectively ($n = 85$). We therefore focus on the maximum conductance amplitude (G_{NaP}) and corresponding conductance density. Like G_{h}, G_{NaP} increased from P14 to P18 but additionally rose substantially from P18 to P28+ (Fig. 6, B–D). Consequently, conductance density was maintained at P28+, despite the large membrane area of older cells (Fig. 6E), and the overall effect of age was significant [$F(5,79) = 3.75, P = 0.005$]. From P14 to P18, conductance density increased by 50% from 36.6 ± 3.76 to 54.9 ± 3.20 pS·pF⁻¹. The effect of age across this period was significant [$t(79) = 3.24, P = 0.002$] as was the difference between densities at P14 and P28+ [$t(79) = 2.90, P = 0.005$]. However, there was not a significant difference between densities at P18 and P28+ [$t(79) = 0.613, P = 0.542$]. This pattern mirrors trends in theta prominence, which reached mature levels by about P18 (Fig. 3).

Thus like I_{h}, the persistent sodium current I_{NaP} was present at P14 and more prominent at P18. Unlike I_{h}, however, the expression of I_{NaP} was well correlated with physiological development whereby densities increased from P14 to P18 and remained high at P28+. These results are consistent with a hypothesis that P14 cells fail to show MPOs because they lack sufficient excitability normally provided in the adult by I_{NaP}. Supplemental simulations indicate that changes in I_{NaP} density of the order measured here have dramatic effects on the occurrence of MPOs, mainly through their role in amplification but also due to the changes in noise levels they produce (supplemental material). In simulations, the amplification produced by a 50% increase in I_{NaP} conductance density (mimicking the change from P14 to P18) was so large that the only way to account for the observed trends in MPO strength in simulations was to include similarly large increases in shunt conductance, consistent with decreases in input resistance and increases in membrane band width we measure from P14 to P18.
Anatomical development of stellate cells

Theta field potentials observed in the EC in vivo (Alonso and García-Austt 1987; Mitchell and Ranck 1980) suggest that the intrinsic rhythmicity of stellate cells may be used either to receive and resonate with theta input from elsewhere or to synchronize cells within layer II at theta frequencies through local interactions. This model supposes that the stellate cell has the appropriate complement of synaptic sites to receive driving input. Both in hippocampal neurons (Harris et al. 1992; Kirov et al. 2004; Pokorny’ and Yamamoto 1981) and stellate cells in other parts of the rat brain (Ferrer and Martinez-Matos 1981) the period of our study is associated with synaptogenesis. It is therefore of interest to establish the morphological development of EC stellate cells, particularly with regard to synaptic growth.

We examined the anatomy of stellate cells at P14, P18, and P28+ stained with either DAB or streptavidin-Alexa Fluor 488. P14 stellate cells already possessed many of the features of the mature cell (Fig. 7A) (Klink and Alonso 1997; Lingenhöhl and Finch 1991). There were prominent primary dendrites, projecting superficially and basally in a wide fan and extending ≤700 µm parallel to the pial surface, tip to tip. The axon usually projected from a basal dendrite. In three of eight P14 cells the axon was preserved to at least layer VI and axon collaterals could be seen in one or two of layers III–VI. Collaterals were always beaded and could extend medially or laterally. In addition, six P14 cells possessed a fine net of beaded axon collaterals in layer II (Fig. 7A, arrowheads). This net mainly covered a spherical region of radius 50 to 100 µm, centered on the soma, although one to three processes could often be seen extending ≤100 µm beyond the dendritic field in either the medial or lateral direction, often both.

P14 cells were, however, less complicated than older cells, having fewer dendrites and many fewer spines (Fig. 7B). We quantified the change in spine density in cells stained with DAB. Mean spine density, measured across randomly selected 40 × 40-μm boxes, increased from 71.2 ± 5.53 mm⁻¹ (n = 3) at P14 to 180.0 ± 13.0 mm⁻¹ (n = 3) at P18 and 295.0 ± 33.6 mm⁻¹ (n = 5) at P28+. This trend was significant \(F(2,8) = 40.8, P < 0.001, \) based on a log₁₀ transform, indicating a vigorous synaptogenesis during the period of our study. Thus low network interconnectivity before P28+ may serve as an additional factor that limits expression of the theta rhythm in the juvenile in vivo.

Discussion

Physiological development of entorhinal stellate cells

We have found that the intrinsic rhythmic properties of stellate cells in layer II of the medial entorhinal cortex (EC) first develop in the third week after birth. Between postnatal days 14 (P14) and 18 (P18), subthreshold membrane potential oscillations (MPOs) at theta frequency appear, reaching strengths indistinguishable from those observed in the adult (P28+). At the same time, spikes associate with the peaks of the oscillations; the spike afterhyperpolarization (AHP) deepens, shortens, and develops an overshoot; and spikes occur in clusters on consecutive MPO cycles. These data contribute to our understanding of the events that characterize development in these cells. They also serve a practical purpose. In vitro physiologists, who often seek to use young tissue for its resilience to hypoxia, should be aware that the mature condition may be studied only in EC stellate cells taken from animals at least 3 wk old.

Mechanisms of spontaneous MPO generation

The simultaneous appearance of MPOs, AHP overshoot, and clustering between P14 and P18 is probably not a coincidence because they all reflect a propensity for resonance. MPOs, for
example, are generally the product of amplified resonance, whereby a basic resonance supplied by a slow rectifying current is amplified by the positive feedback of a regenerative current (Hutcheon and Yarom 2000). An overshooting (under-damped) response to a perturbation is a property of any resonant system and in EC layer II stellate cells the robust rebound and overshoot of the AHP have been shown to be essential for spike clustering (Fernandez and White 2008; Nolan et al. 2007). We may therefore characterize development between P14 and P18 as being one of increasing resonance.

Direct evidence for this resonance was obtained from our impedance measurements, which showed that P14 cells were less resonant than both P18 and P28+ cells at potentials between rest and spike threshold, some P14 cells showing no resonance at all. The increased resonance with age appears not to be the result of simple changes in passive resistance. In the mature stellate cell, artificially decreasing resistance results in a less resonant response (Fernandez and White 2008), whereas pharmacological block of background conductance amplifies oscillation (Dickson et al. 2000b). We found resistance to fall throughout development, suggesting that resonance was achieved despite membrane shunting. This observation would explain how theta prominence remained constant from P18 to P28+, despite a loss in overall power.

To investigate the cause of resonance, and thus the development of MPOs, we examined the developmental expression of two currents thought to generate MPOs in the adult, the h-current Ih and the persistent sodium current INaP (Alonso and Llinás 1989; Dickson et al. 2000b; although see following text). According to current models, Ih and INaP fulfill respectively the roles of slow rectifier and regenerative current described earlier (Dickson et al. 2000b). Additionally, INaP is a noisy current and is responsible for maintaining oscillation by continually agitating the system (Dorval and White 2005; White et al. 1991). Even at P14, both Ih and INaP were already established in EC stellate cells. This finding is consistent with the role that both these currents play in the hippocampus, such as in immature rhythms (Bender et al. 2005; Sipila et al. 2006; Strata et al. 1997). Nevertheless, both currents underwent changes in expression levels that could have affected MPO development.

Of the two currents, the profile of INaP was the more straightforward. Its conductance density increased by 50% from P14 to P18 and remained elevated at P28+. In a simulation including both Ih and INaP plus a shunt (leak) conductance, changes in INaP density of this order were found to have substantial effects on theta power both through extra noise and particularly amplification. So large was the effect that we found it necessary to substantially increase shunt conductance with age to prevent unbridled oscillation. These results indicate that INaP could be instrumental in the appearance of MPOs during week 3.

The interpretation of Ih development is more difficult. Although the conductance density of Ih increased significantly from P14 to P18, it was intermediate at P28+ and not significantly different from either the P14 or P18 value. It is thus not clear whether Ih expression exerts much influence over physiology beyond P14. If Ih expression were genuinely intermediate at P28+, this might explain why AHP overshoot, which is influenced by Ih (Nolan et al. 2007), fell from P18 to P28+ (albeit nonsignificantly). Nevertheless, AHP overshoot is likely to be determined by a number of factors, including shunt conductance (see Fernandez and White 2008), which increased over the same period. Parsimoniously, we suggest it is best to assume that Ih is not a limiting factor in the development of MPOs during week 3, even if it may temporarily contribute to increasing resonance. This interpretation would be consistent with our measured responses to hyperpolarizing current steps, which showed that effective Ih-induced sag strength was constant throughout the study period. In the hippocampus, too, Ih expression undergoes only modest change in week 3 and even peaks before P14 (Bender et al. 2001, 2005; Vasilyev and Barish 2002). Furthermore, in adult EC stellate cells, large reductions in Ih levels of ≳65% are necessary for MPOs to be abolished (Dickson et al. 2000b; Klink and Alonso 1993). The range of values we report is thus smaller than would normally be expected to affect the MPO. This conclusion is supported by our simulations in which the relative changes in Ih density we measured in vitro had only modest effects on the existence of MPOs.

According to the preceding line of argument, we may present a model for MPO development in which developing INaP expression is pivotal, whereas Ih is already at levels adequate for mature oscillation at P14. This does not mean, however, that other currents are unimportant. Nolan et al. (2007) recently reported that knock out of the HCN1 channel protein, which carries the majority of Ih in stellate cells, does not affect theta-range voltage fluctuations. This result is difficult to interpret because the authors did not measure the concentration of power at theta relative to other frequencies and because the data shown by Nolan et al. (2007) suggest to us that MPOs are less prominent in mice than in rats. Nevertheless, since the work of Dickson et al. (2000b) implicating Ih in MPO generation, it has been shown that the drug they applied to block Ih, ZD7288, also blocks T-type Ca2+ currents (Felix et al. 2003; Sánchez-Alonso et al. 2008). Because stellate cells possess these currents (Bruehl and Wadman 1999), it is possible that the abolition of MPOs that Dickson et al. (2000b) reported represents the block of Ih, T-type Ca2+ channels, and Ca2+-dependent K+ channels (also present; Eder et al. 1991). Interestingly, conventional blockers of Ih and Ca2+ channels do not eliminate MPOs when applied on their own (Klink and Alonso 1993); neither do blockers of K+ channels (Dickson et al. 2000b; Yoshida and Alonso 2007). It may thus be profitable in the future to consider the balance of several currents in the generation of MPOs, both in the adult and during development.

Functional consequences of developmental changes

The function of MPOs per se in stellate cells is at present unclear. In vitro, MPOs are sensitive to synaptic conductance and are eliminated in the presence of incoherent synaptic input (Fernandez and White 2008). Nevertheless, as the product of an underlying resonance, MPOs indicate a competence for stellate cells to respond to oscillatory input. In the aroused state, stellate cells receive strong theta drive from the medial septum (Dickson et al. 1994; Mitchell et al. 1982) and most likely the EC deep layers as well (Gloveli et al. 1999). Under such conditions, it is likely that a resonant membrane will allow the stellate cell to tune its activity to theta frequencies. Thus the appearance of electrical resonance and subthreshold
MPOs in the theta range between P14 and P18 suggests that, as a whole, the EC layer II is not able to process theta effectively at P14 but becomes so within the following week.

Our anatomical data support this hypothesis. The dendritic spines of stellate cells receive synaptic input from both extrinsic sources and other stellates within layer II (Kumar et al. 2007; Witter 1993). They therefore supply a means by which the oscillatory properties of stellate cells could not only tune the cell to septal drive but also allow stellates to synchronize directly through reciprocal interactions (Alonso and Llinás 1989; Llinás 1988). At P14, dendrites were relatively free of spines, suggesting a limited capacity to receive input of any kind. By P18, however, spine density had more than doubled and by P28 it had quadrupled. This pattern is very similar to that seen in the hippocampus CA1, where spines first appear around P11–P12 and witness a two- to fourfold increase from P15 to adulthood (Fiala et al. 1998; Harris et al. 1992). The exact age at which a full adult complement of spines is achieved is not clear because we did not study cells between P18 and P28+; thus we cannot rule out the possibility that new spines continue to develop right up to P28 or beyond. Nevertheless, almost adult spine densities and homeostasis are attained by P22 in hippocampus CA1 (Kirov et al. 2004). It is thus quite possible that both intrinsic and network sources of oscillation appear simultaneously in the EC and reach near completion by around the end of week 3.

More generally, the changes we observe fit into a trend in which immature patterns of activity involved with the formation of functional circuits give way to integrative functions in the third week after birth, contemporaneously with rapid synaptogenesis (Ben-Ari 2001; Dumas 2005). For the hippocampal formation, mature functions notably include spatial memory (O’Keefe and Nadel 1978). Several studies indicate that the theta rhythm is essential for proper memory function in the hippocampal formation, at both the synaptic and the behavioral levels (Huerta and Lisman 1993; Hyman et al. 2003; Mitchell et al. 1982). Our finding that EC layer II stellate cells develop mature MPOs between P14 and P18 may thus help to explain why many spatial memory functions are poorly developed or absent until the end of week 3 (Carew and Rudy 1991; Carman and Mactutus 2001; Green and Stanton 1987; Rauch and Raskin 1984; Rudy 1993; Rudy et al. 1987). However, perhaps the most striking feature of the EC in particular—and thus the feature of most relevance to our study—is the EC representation of space. “Grid cells” of the superficial layers of the medial EC, which presumably include stellate cells, display activity that is modulated according to the position of the rat on an abstract lattice across the laboratory floor (Hafting et al. 2005). Different cells define different grids of different orientations and phases and a gradient in grid spacing exists from narrow in the most dorsal EC to wide in the more ventral EC (Hafting et al. 2005). Presently we do not know how the grid cell representation is formed, although current theories implicate the theta rhythm (Blair et al. 2007; Burgess et al. 2007; O’Keefe and Burgess 2005). In one recent study, it was reported that stellate cells along the dorsoventral extent of EC exhibit a gradient in the frequency of theta MPOs that, when applied to the Burgess model, produced grid spacings as observed in vivo (Giocomo et al. 2007). This correspondence strongly supports the notion that the theta resonance of entorhinal stellate cells is important for spatial coding. If so, then we would predict that grid cells appear in the rat no earlier than about P18.

Acknowledgments

We thank T. Blute for training on the confocal microscope and J. Magistretti for advice on recording solutions and techniques.

Present address of J. White: Department of Bioengineering, University of Utah, 20 S. 2030 E., Salt Lake City, UT 84112.

Grants

This work was supported by the National Institutes of Health.

References

Dumas TC. Developmental regulation of cognitive abilities: modified com-

Felix R, Sandoval A, Sánchez D, Cómora JC, De la Vega-Beltrán JL, Treviño CL, Darszon A. ZD7288 inhibits low-threshold Ca2+ channel

Development of Stellate Cells

J Neurophysiol · VOL 100 · DECEMBER 2008 · www.jn.org

